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A Reconstructed Discontinuous Galerkin Method for the
Compressible Flows on Unstructured Tetrahedral Grids
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A reconstruction-based discontinuous Galerkin (RDG) method is presented for the
solution of the compressible Navier-Stokes equations on unstructured tetrahedral grids. The
RDG method, originally developed for the compressible Euler equations, is extended to
discretize viscous and heat fluxes in the Navier-Stokes equations using a so-called inter-cell
reconstruction, where a smooth solution is locally reconstructed using a least-squares
method from the underlying discontinuous DG solution. Similar to the recovery-based DG
(rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty
or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this
RDG method does not need to judiciously choose a proper form of a recovered polynomial,
thus is simple, flexible, and robust, and can be used on unstructured grids. The preliminary
results indicate that this RDG method is stable on unstructured tetrahedral grids, and
provides a viable and attractive alternative for the discretization of the viscous and heat
fluxes in the Navier-Stokes equations.

1. Introduction

he discontinuous Galerkin methods'>'(DGM) have recently become popular for the solution of systems of

conservation laws. Nowadays, they are widely used in computational fluid dynamics, computational acoustics,
and computational magneto-hydrodynamics. The discontinuous Galerkin methods combine two advantageous
features commonly associated to finite element and finite volume methods. As in classical finite element methods,
accuracy is obtained by means of high-order polynomial approximation within an element rather than by wide
stencils as in the case of finite volume methods. The physics of wave propagation is, however, accounted for by
solving the Riemann problems that arise from the discontinuous representation of the solution at element interfaces.
In this respect, the methods are therefore similar to finite volume methods. The discontinuous Galerkin methods
have many attractive features:1) They have several useful mathematical properties with respect to conservation,
stability, and convergence; 2) The method can be easily extended to higher-order (>2") approximation; 3) The
methods are well suited for complex geometries since they can be applied on unstructured grids. In addition, the
methods can also handle non-conforming elements, where the grids are allowed to have hanging nodes; 4) The
methods are highly parallelizable, as they are compact and each element is independent. Since the elements are
discontinuous, and the inter-element communications are minimal, domain decomposition can be efficiently
employed. The compactness also allows for structured and simplified coding for the methods; 5) They can easily
handle adaptive strategies, since refining or coarsening a grid can be achieved without considering the continuity
restriction commonly associated with the conforming elements. The methods allow easy implementation of /p-
refinement, for example, the order of accuracy, or shape, can vary from element to element; 6) They have the ability
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to compute low Mach number flow problems without recourse to the time-preconditioning techniques normally
required for the finite volume methods. However, DGM have a number of weaknesses that have yet to be addressed,
before they can become a viable, attractive, competitive, and ultimately superior numerical method over more
mature and well-established second order finite volume methods for flow problems of practical interest in a complex
configuration environment. In particular, there are three most challenging and unresolved issues in the DGM: a) how
to efficiently discretize diffusion terms required for the Navier-Stokes equations, b) how to effectively control
spurious oscillations in the presence of strong discontinuities, and ¢) how to develop efficient time integration
schemes for time accurate and steady-state solutions. Indeed, compared to the finite element methods and finite
volume methods, the DG methods require solutions of systems of equations with more unknowns for the same grids.
Consequently, these methods have been recognized as expensive in terms of both computational costs and storage
requirements.

DG methods are indeed a natural choice for the solution of the hyperbolic equations, such as the compressible
Euler equations. However, the DG formulation is far less certain and advantageous for the compressible Navier-
Stokes equations, where viscous and heat fluxes exist. A severe difficulty raised by the application of the DG
methods to the Navier-Stokes equations is the approximation of the numerical fluxes for the viscous fluxes, that has
to properly resolve the discontinuities at the interfaces. Taking a simple arithmetic mean of the solution derivatives
from the left and right is inconsistent, because the arithmetic mean of the solution derivatives does not take into
account a possible jump of the solutions. A number of numerical methods have been proposed in the literature, such
as those by Bassi and Rebayzl’zz, Cockburn and Shu23, Baumann and Oden24, Peraire and PerssonZS, and many
others. Arnold et al.?® have analyzed a large class of discontinuous Galerkin methods for second-order elliptic
problems in a unified formulation. All these methods have introduced in some way the influence of the
discontinuities in order to define correct and consistent diffusive fluxes. Lately, Gassner et al?’ introduced a
numerical scheme based on the exact solution of the diffusive generalized Riemann problem for the discontinuous
Galerkin methods. Liu et al*® and Luo et al® used a BGK-based DG method to compute numerical fluxes at the
interface for the Navier-Stokes equations, which has the ability to include both convection and dissipation effects.
Unfortunately, all these methods seem to require substantially more computational effort than the classical
continuous finite element methods, which are naturally suited for the discretization of elliptic problems. More
recently, van Leer et al*** proposed a recovery-based DG (rDG) method for the diffusion equation using the
recovery principle, that recovers a smooth continuous solution that in the weak sense is indistinguishable from the
discontinuous discrete solution. The rDG method is further developed by Nourgaliev et al” to solve the
compressible Navier-Stokes equations on structured grids. The most attractive feature of rDG is the simplicity and
generality of the recovery principle, which immediately allows one to create and further develop DG diffusion
schemes. These schemes are of higher accuracy than any other DG diffusion schemes currently in use, while
boasting the smallest eigenvalues, hence the largest stability range for explicit time-marching schemes, as shown by
Huynh™. However, one significant weakness of rDG methods is a lack of flexibility. For instance in the case of
DG(P1), due to the embedded 1-D interpolation problem, a cubic basis at an interface is required in the direction
connecting two centroids of the two cells adjacent to that interface. In 2D, two more basis (out of six degrees of
freedom) is needed in the direction n normal to {. In 3D, four more basis (out of eight degrees of freedom) is
required in two directions normal to {. This makes the choice of the recovery basis nontrivial. In addition, the basis
of the recovered solution is twice as large as the basis of the underlying DG solution. This higher order
representation of the recovered solution indeed yields higher order accuracy for the diffusion equations on regular
grids, and however is unnecessary for the Navier-Stokes equations, as the overall order of accuracy is determined
not only by diffusive fluxes but also advective fluxes. The fundamental issue is how to judiciously choose a proper
form of a recovered polynomial in such a way that the resulting recovered linear system is well conditioned, and
thus can be inverted. Clearly, this lack of flexibility makes rDG methods less appealing for the multidimensional
problems. Fortunately, recovery is not the only way to obtain a locally smooth polynomial solution at the interface
from the underlying discontinuous Galerkin solutions. Rather, reconstruction widely used in the finite volume
methods provides an alternative, probably a better choice to obtain a higher-order polynomial representation.

Dumbser et al'*** have introduced a new family of in-cell recovery DG methods, termed PnPm schemes, where
Pn indicates that a piecewise polynomial of degree of n is used to represent a DG solution, and Pm represents a
reconstructed polynomial solution of degree of m (m>n) that is used to compute the fluxes. The PnPm schemes are
designed to enhance the accuracy of the discontinuous Galerkin method by increasing the order of the underlying
polynomial solution. The beauty of PnPm schemes is that they provide a unified formulation for both finite volume
and DG methods, and contain both classical finite volume and standard DG methods as two special cases of PnPm
schemes, and thus allow for a direct efficiency comparison. When n=0, i.e. a piecewise constant polynomial is used
to represent a numerical solution, POPm is nothing but classical high order finite volume schemes, where a



polynomial solution of degree m (m >1) is reconstructed from a piecewise constant solution. When m=n, the
reconstruction reduces to the identity operator, and PnPn scheme yields a standard DG method. Obviously, the
construction of an accurate and efficient reconstruction operator is crucial to the success of the PnPm schemes. This
is achieved using a so-called in-cell recovery similar to the inter-cell recovery originally proposed by Van Leer et
al.*** where recovered equations are obtained using a L, projection, i.e., the recovered polynomial solution is
uniquely determined by making it indistinguishable from the underlying DG solutions in the contributing cells in the
weak sense. Dumbser® has applied this PnPm method to solve the compressible Navier-Stokes equations on
unstructured grids, where the discretization of the viscous fluxes is based on the exact solution of the diffusive
generalized Riemann problem developed by Gassner et al*’.

A reconstructed discontinuous Galerkin method, originally introduced for the compressible Euler equations
using an in-cell reconstruction'®**, has been developed for the solution of the two dimensional compressible Navier-
Stokes equations using an inter-cell reconstruction on arbitrary grids®®. The objective of the effort discussed in this
paper is to extend this reconstructed discontinuous Galerkin method for the solution of the compressible Navier-
Stokes equations on unstructured tetrahedral grids. Starting from an underlying discontinuous DG solution, a smooth
solution is locally reconstructed on the union of two cells adjacent to an interface to compute the viscous and heat
fluxes in the Navier-Stokes equations at the interface. The reconstructed continuous solution is required to be
conservative and to match the point values of the underlying DG solution and its derivatives at the two neighboring
cells. The resultant over-determined system is then solved using a least-squares method. Similar to the recovery-
based DG (rDG) methods, this reconstructed DG method automatically generates penalty or coupling terms found in
traditional DG methods, and thus is stable, and compact. Unlike rDG methods, this RDG does not need to
judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be
implemented on arbitrary grids. The preliminary results indicates that the RDG method is stable, accurate, and
efficient, demonstrating its potential to become a viable, attractive, competitive, and perhaps superior DG method
over existing DG methods for the solution of the compressible Navier-Stokes equations on unstructured tetrahedral
grids. The remainder of this paper is structured as follows. The governing equations are listed in Section 2. The
underlying reconstructed discontinuous Galerkin method is presented in Section 3. Numerical experiments are
reported in Section 4. Concluding remarks are given in Section 5.

II. Governing Equations

The Navier-Stokes equations governing unsteady compressible viscous flows can be expressed as
UGy , OF,(UGst) _0G,(Ufx) @1
ot ox, ox,

where the summation convention has been used. The conservative variable vector U, advective (inviscid) flux vector
F, and viscous flux vector G are defined by

P pu, 0
U= F, = 5| G- @)
=| P j | Pt POy il 9
pe u,(pe+p) uo,+q;

Here p, p, and e denote the density, pressure, and specific total energy of the fluid, respectively, and u; is the

velocity of the flow in the coordinate direction X, . The pressure can be computed from the equation of state

1
p=(r=Dple=uu,) @3

which is valid for perfect gas, where vy is the ratio of the specific heats. The components of the viscous stress tensor
ojj and the heat flux vector are given by

Ou, Ou, 2 ou _ 1 por

e o A

j i k / 2.4

In the above equations, T is the temperature of the fluid, Pr the laminar Prandtl number, which is taken as 0.7 for air.
u represents the molecular viscosity, which can be determined through Sutherland’s law
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Lo denotes the viscosity at the reference temperature 7y, and S is a constant which for are assumes the value S =
110°K. The temperature of the fluid 7 is determined by
T=y L 26

P (2.6)
Neglecting viscous effects, the left-hand side of Eq. (2.1) represents the Euler equations governing unsteady
compressible inviscid flows.

III. Reconstructed Discontinuous Galerkin Method

The governing equation (2.1) is discretized using a discontinuous Galerkin finite element formulation. To formulate
the discontinuous Galerkin method, we first introduce the following weak formulation, which is obtained by
multiplying the above conservation law by a test function W, integrating over the domain €, and then performing an
integration by parts,

ouU oW
i dQ+ankdr jF xde jck Jdr - jG aarQ YWeV (3.1

where I'(=0Q) denotes the boundary of Q, and n; the unit outward normal vector to the boundary. We assume that
the domain Q is subdivided into a collection of non-overlapping tetrahedral elements Q.. We introduce the following
broken Sobolev space V;°

vy = elL@l o, b el e, e o} (3.2)

which consists of discontinuous vector-values polynomial functions of degree p, and where m is the dimension of
the unknown vector and

v =span{1_[xf" :0<q, Sp,OSiSd} (3.3)

where o denotes a multi-index and d is the dimension of space. Then, we can obtain the following semi-discrete
form by applying weak formulation on each element Q.

Find U y € Vhp such as

d oW
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where U, and W, represent the finite element approximations to the analytical solution U and the test function W
respectively, and they are approximated by a piecewise polynomial function of degrees p, which are discontinuous
between the cell interfaces. Assume that B is the basis of polynomial function of degrees p, this is then equivalent to
the following system of N equations,

di [u,Bd@+ [F.(U, )nBdr - [F,(U, )?dg =
de r, Q, Xk 655)
OB, . '
[G.(U, nBdr-[G,(u, )=dQ, 1<i<N
k

e e



where N is the dimension of the polynomial space. Since the numerical solution U, is discontinuous between
element interfaces, the interface fluxes are not uniquely defined. The choice of these fluxes is crucial for the DG
formulation. Like in the finite volume methods, the inviscid flux function Fy(U,)n; appearing in the boundary
integral can be replaced by a numerical Riemann flux function Hk(ULh,URh,nk) where U," and UR are the
conservative state vector at the left and right side of the element boundary. The computation of the viscous fluxes in
the boundary integral has to properly resolve the discontinuities at the interfaces. This scheme is called
discontinuous Galerkin method of degree p, or in short notation DG(P) method. Note that discontinuous Galerkin
formulations are very similar to finite volume schemes, especially in their use of numerical fluxes. Indeed, the
classical first-order cell-centered finite volume scheme exactly corresponds to the DG(Py) method, i.e., to the
discontinuous Galerkin method using a piecewise constant polynomial. Consequently, the DG(Py) methods with k>0
can be regarded as a natural generalization of finite volume methods to higher order methods. By simply increasing
the degree P of the polynomials, the DG methods of corresponding higher order can be obtained.

The domain and boundary integrals in Eq. (3.5) are calculated using Gauss quadrature formulas. The number of
quadrature points used is chosen to integrate exactly polynomials of order of 2p and 2p+1 in the reference element
for the domain and surface integrals, respectively. For the DG(P;) method considered in this study, three points are
used in the boundary integrals and the domain integrals are evaluated using four points.

In the traditional DGM, numerical polynomial solutions U, in each element are expressed using either standard
Lagrange finite element or hierarchical node-based basis as following

N
U, => U,®)B,, (3:6)
i=1

where B; are the finite element basis functions. As a result, the unknowns to be solved are the variables at the nodes
U;, However, numerical polynomial solutions U can be expressed in other forms as well. In the present work, the
numerical polynomial solutions are represented using a Taylor series expansion at the center of the cell. For
example, if we do a Taylor series expansion at the cell centroid, a linear polynomial solution can be expressed as
follows

U=V L ) T+ DL ez 67

where U, is the mean value of U in this cell. The unknowns to be solved in this formulation are the cell-averaged
variables and their derivatives at the center of the cells regardless of element shapes. In this case, the dimension of
the polynomial space is four and the four basis functions are

B=1 B,=x-x, By=y—y, B,=z—z, (3.8)

The discontinuous Galerkin formulation then leads to the following four equations

d [Udo+ [F(U, ndr =[G, (U, ndr, i=1

dt .Qe Fe Fe (39)
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1d€Q). Note that in this formulation, equations for the cell-

where, the element of the mass matrix 7, = J'Bi 4B

Qe
averaged variables are decoupled from equations for their derivatives due to the judicial choice of the basis functions
and the fact that

.Qg

This set of basis functions has a considerable disadvantage, especially when higher-order polynomial solutions are
considered. Occasionally an inverse of the mass matrix M may not exist. In the implementation of this DG method,
the basis functions are actually normalized in order to improve the conditioning of the system matrix (3.5) as
follows:
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here AX:O-S(Xmax'Xmin)a AFO-S(Ymax'Ymin): and AZ:O~5(Zmax'zmin)> and Xma >Xmins Ymaxa Zmin Ymaxy and Zmin are the
maximum and minimum coordinates in the cell Q. in x-, y-, and z-directions, respectively. A linear polynomial
solution can then be rewritten as

~ (3.12)
U =0+Y | A, + Y| A+ Y| Az,
Ox oy oz

The above normalization is especially important to alleviate the stiffness of the system matrix for higher-order DG
approximations.

This Taylor-basis DG method has a number of attractive features. Theoretically, this formulation allows us to
clearly see the similarity and difference between DG and FV methods. In fact, the discretized governing equations
for the cell-averaged variables and the assumption of polynomial solutions on each cell are exactly the same for both
finite volume and DG methods. The only difference between them is the way how they obtain high-order (>1)
polynomial solutions. In the finite volume methods, the polynomial solution of degrees p are reconstructed using the
mean values of the neighboring cells, which can be obtained using either TVD/MUSCL or ENO/WENO
reconstruction schemes. Unlike the FV methods, the DG methods compute the derivatives in a manner similar to the
mean variables. This is compact, rigorous, and elegant mathematically in contrast with arbitrariness characterizing
the reconstruction schemes with respect how to compute the derivatives and how to choose the stencils in the FV
methods. Furthermore, the higher order DG methods can be easily constructed by simply increasing the degree p of
the polynomials locally, in contrast to the finite volume methods which use the extended stencils to achieve higher
order of accuracy. In addition, the Taylor-basis DG method makes the implementation of both in-cell and inter-cell
reconstruction schemes straightforward and simple®.

The discretization of the Navier-Stokes equations requires the evaluation of the viscous fluxes at a cell interface,
which has to properly resolve the discontinuities at the interfaces. Taking a simple arithmetic mean of the viscous
fluxes from the left and right cells is inconsistent, because the arithmetic mean of the solution derivatives does not
take into account a possible jump of the solutions. In the reconstructed DG method, a continuous solution U® is
locally reconstructed on the union of two cells Q;(=Q;UCQ;) adjacent to the interface based on the underlying
discontinuous Galerkin solution in the two abutting elements. This reconstructed smooth solution is then used to
compute the viscous fluxes at the interface. Without lose of generality, let us consider the case of DG(P1) method,
where the reconstructed solution UX, similar to the underlying DG solution on €; can be expressed in Qjj using a
Taylor basis as follows:

U =T, +U’B,(x)+U’B,(x)+ U/B,(x) (3.13)

where fJij is the mean value of U on Qjj, and the derivatives are the point-wise value at the center of ;. There are
four degrees of freedom, and therefore four unknowns to be determined. However, the cell-average value fJij can be
trivially obtained, by requiring the reconstruction scheme to be conservative, a fundamental requirement. Due to the
judicious choice of Taylor basis in our DG formulation, this leads to

~ UQ+U0Q.;
U-- — J_J
ij
Q,+Q,
The remaining three degrees of freedom can be determined by imposing that the reconstructed solution and its
derivatives are equal to the underlying DG solution and its derivatives at cells i and j. Consider cell i, one obtains

(3.15)
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where the basis function B is evaluated at the center of cell i, i.e., B=B(x;);). This can be written in a matrix form as
follows:

BZi B3i B4i Ui - Uij
%Axi 0 0 U? a_UL Ax.
Ox x ox
J =
0 6B3,.Ai 0 U{ = a—UL- Ay (3.17)
y uUY oy

0 0o Buy YA
aZ 82 i i

Similar equations can be derived for the cell j. As a result, a non-square matrix of 8x3 is obtained. This over-
determined linear system of 8 equations for 3 unknowns can then be solved in the least-squares sense. In the present
work, it is solved using a normal equation approach, which, by pre-multiplying through by matrix transpose, yields a
symmetric linear system of equations 3x3. This linear system of equations can be then trivially solved to obtain the
three first derivatives of the reconstructed continuous linear polynomial solution. This reconstructed smooth linear
polynomial solution is then used to compute the viscous and heat fluxes in the Navier-Stokes equations at the
interfaces. Similar to the recovered DG methods, the inter-cell reconstruction is compact, as it only involves two
cells adjacent to the interfaces. Unlike the recovery-based DG methods, the reconstructed DG method only
reconstructs a smooth polynomial solution of the same order as the underlying DG solution, thus there is no need to
judiciously choose a proper form of a recovered polynomial and ensure that the recovered system is well
conditioned and can be inverted. The resulting DG method for the discretization of the viscous and heat fluxes is
termed a reconstructed DG method (RDG(P1) in short notation).

The inter-cell reconstruction described above can be applied to the boundary cells in a straightforward manner
with the aid of a so-called ghost cell approach, where the computational domain is extended to a set of ghost cells.
The values of the flow variables in the ghost cells are determined by the desired boundary conditions. The
compactness of the DG methods makes the imposition of boundary conditions simple and easy, which only requires
one layer of ghost cells, regardless of the order of the DG methods.

It is worth to note that the application of this inter-cell reconstruction to DG(P0) method where the first
derivative is approximated using a second-order central differencing method demonstrates that this reconstruction
DG method automatically provides the coupling terms required for the stability and leads to a 5-point second-order
scheme for the diffusive operator (second derivative) in 1D on a uniform grid, contrary to most of discretization
methods that lead to a 3-point stencil second-order method. This analysis indicates the potential of this
reconstruction method for the accurate and robust discretization of the viscous fluxes on highly non-uniform, highly
stretched, and highly distorted grids, as it is practically impossible to obtain a second-order accurate and compact
cell-centered finite volume method for multi-dimensional problems on such grids.

This reconstructed DG method has been implemented in a well-tested 3D DG code'>"”**. In this code, a fast,
low-storage p-multigrid method'®'” is developed to obtain steady state solutions, and an explicit three-stage third-
order TVD Runge-Kutta scheme is used to advance solution in time for the unsteady flow problems. Many upwind
schemes have been implemented for the discretization of the inviscid fluxes, although HLLC scheme is exclusively
used for the approximate solution of the Riemann problem in this work. Our numerical results in 2D have shown
that the computing costs required by this RDG method is about half of the computing costs by BR2 scheme for the
discreitization of the viscous fluxes in the Navier-Stokes equations. This is mainly due the fact that the BR2 scheme
requires to solve a linear system. The formation of this linear system involves the boundary integrals using Gauss
quadrature formulas, and thus is computationally intensive. The RDG method only involves the solution of a least-
squares problem at an inter-cell interface. The resulting reconstruction matrix can be pre-computed, inverted, and
stored at the start of the computation, thus leading to a very efficient discretization method for the viscous fluxes.
Note that this is achieved at the expense of an increasing storage requirement. In the present work, the
reconstruction matrix is not pre-computed and stored in order to avoid the significant increase in memory
requirements.



IV. Numerical Examples

A. Blasius Boundary Layer

A laminar boundary layer over an adiabatic flat plate at a free-stream Mach number of 0.2 and a Reynolds number
of 100,000 based on the freestream velocity and the length of the flat plate is considered in this test case, where the
computational domain is bounded from -0.5 to 1 in the x-direction, 0 to 0.5 in the y-direction, and 0 to 0.1 in the z-
direction, and the flat plate starts at point (0,0) and extends to (1,0). This problem is chosen to illustrate that RDG
method is able to obtain highly accurate solution for the Navier-Stokes equations, as the Blasius solution can be used
to measure accuracy of the numerical solutions. The grid used in this test case has 106,819 elements, 20,856 grid
points, and 5,824 boundary points, as shown in Figure 1, where the computed velocity contours in the flow field are
also displayed. Figure 2 compares the logarithmic plot of the computed skin friction coefficient obtained by RDG
solutions with the Blasius solution.
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Figure 1. Unstructured mesh (nelem=106,819, npoin=20,856, nboun=5,824) and computed velocity contours
by the RDG(P1)2) for subsonic flow past a flat plate at M= 0.2, Re=100,000, a=0°.

1 T -0.8
RDG(P1P2} +
Blasius
1-1
1-1.2
e
T {-1.4
] 0.1
-
b -1.6
Lo
=]
(]
< -1.8
[=]
=1
e
E -2
[
- 0.0l
he) -2.2
(%
2.4
-2.6
0,001 -2.8

0.0001 0.001 0.01 0.1 1

¥-coordinates

Figure 2. Logarithmic plot of the computed skin friction coefficient distribution along the center line of the
flat plate obtained by the RDG(P1P2) solutions.



B. Subsonic viscous flow past a Sphere

This test case involves a subsonic viscous flow past a sphere at a Mach number of 0.3, and an angle of attack 0°, and
a Reynolds number of 118 based on the freestream velocity and the diameter of the sphere, which has been studied
both experimentally’” and numerically’®. An adiabatic wall is assumed in this test case. Note that only a half of the
configuration is modeled, due the symmetry of the problem. Figure 3 shows the computational grid used in this test
case, consisting of 119,390 tetrahedral elements, 22,530 grid points, and 4,511 boundary points, and the computed
velocity contours in the flow field obtained by the RDG method. The computational streamlines are compared with
experimental streamlines in Figure 4, where steady separation bubble is readily observed in both plots and the size
of the seperation region in the computation agrees very well with that of the experiment.
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Figure 3. Unstructured mesh (left) (nelem=119,390, npoin=22,530, nboun=4,511) and computed Mach
number contours by the RDG(P1P2) (right) for subsonic flow past a sphere at M= 0.3, Re=118, a=0".

Figure 4. Velocity vector plot in the back of the sphere from the computation (left) and streamlines of the flow
filed from experiment (right) for subsonic flow past a sphere at M= 0.3, Re=118, a=0°.



C. Laminar Flow in a Square Duct with 90° Bend

A 3D laminar flow through a duct with 90° bend is computed in this example. The cross section of the bend is
square throughout the bend. The Reynolds number based on the inlet mean velocity and the entrance width H is 790.
The mean radius of the bend is 2.3. The inlet and outlet boundaries are located at SH up- and downstream from the
bend. The grid used in the computation is shown in Figure 5. It contains 230,181 elements, 43,964 grid points, and
10,040 boundary points. The computation was performed at a Mach number of 0.2. Figure 6 shows the computed
streamwise velocity contours at several streamwise cross sections.

Figure 5. Unstructured mesh used for computing a laminar flow through a square duct with a 90° bend(
(nelem=230,181, npoin=43,964, nboun=10,040).

Figure 6. Computed velocity contours for square duct with a 90° bend at several streamwise sections at M=
0.2, Re=790.
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V. Conclusion

A reconstructed discontinuous Galerkin method has been developed for the solution of the compressible Navier-
Stokes equations on unstructured tetrahedral grids. A smooth solution is locally reconstructed to discretize viscous
and heat fluxes in the Navier-Stokes equations using a least-squares method from the underlying discontinuous
discrete solution. The preliminary results are promising, indicating its potential to provide a viable, attractive,
competitive, and perhaps superior DG method over existing DG methods for the discretization of the viscous and
heat fluxes in the compressible Navier-Stokes equations.

Acknowledgments

This manuscript has been authored by Battelle Energy Alliance, LLC under contract No. DE-AC07-05ID14517
(INL/CON-10-17570) with the U.S. Department of Energy. The United States Government retains and the
published, by accepting the article for publication, acknowledges that the United States Government retains a
nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The authors would like to
acknowledge the partial support for this work provided by DOE under Nuclear Engineering University Program.
The first and last authors would also like to acknowledge the partial support for this work provided by the NSF
under project No. NSF-DMS0914706.

References
'Reed, W.H. Reed and T.R. Hill, “*Triangular Mesh Methods for the Neutron Transport Equation," Los Alamos Scientific

Laboratory Report, LA-UR-73-479, 1973.

2B. Cockburn, S. Hou, and C. W. Shu, "TVD Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method
for conservation laws IV: the Multidimensional Case," Mathematics of Computation, Vol. 55, pp. 545-581, 1990.corge, P. L.,
Automatic Mesh Generation, J. Wiley & Sons, 1991.

3B. Cockburn, and C. W. Shu, “The Runge-Kutta Discontinuous Galerkin Method for conservation laws V:
Multidimensional System," Journal of Computational Physics, Vol. 141, pp. 199-224, 1998.

4B. Cockburn, G. Karniadakis, and C. W. Shu, “'The Development of Discontinuous Galerkin Method", in Discontinuous
Galerkin Methods, Theory, Computation, and Applications, edited by B. Cockburn, G.E. Karniadakis, and C. W. Shu, Lecture
Notes in Computational Science and Engineering, Springer-Verlag, New York, 2000, Vol. 11 pp. 5-50, 2000.

SF. Bassi and S. Rebay, "High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations,” Journal
of Computational Physics, Vol. 138, pp. 251-285, 1997.

6H. L. Atkins and C. W. Shu, 'Quadrature Free Implementation of Discontinuous Galerkin Method for Hyperbolic
Equations," AIAA Journal, Vol. 36, No. 5, 1998.

F. Bassi and S. Rebay, "GMRES discontinuous Galerkin solution of the Compressible Navier-Stokes Equations,"
Discontinuous Galerkin Methods, Theory, Computation, and Applications, edited by B. Cockburn, G.E. Karniadakis, and C.
W. Shu, Lecture Notes in Computational Science and Engineering, Springer-Verlag, New York, 2000, Vol. 11 pp. 197-208,
2000.

ST. C. Warburton, and G. E. Karniadakis, **A Discontinuous Galerkin Method for the Viscous MHD Equations," Journal of
Computational Physics, Vol. 152, pp. 608-641, 1999.

°J. S. Hesthaven and T. Warburton, “*Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications,"
Texts in Applied Mathematics, Vol. 56, 2008.

10p_ Rasetarinera and M. Y. Hussaini, “"An Efficient Implicit Discontinuous Spectral Galerkin Method," Journal of
Computational Physics, Vol. 172, pp. 718-738, 2001.

"B. T. Helenbrook, D. Mavriplis, and H. L. Atkins, “*Analysis of p-Multigrid for Continuous and Discontinuous Finite
Element Discretizations," AIAA Paper 2003-3989, 2003.

12K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal, ' p-Multigrid solution of high-order discontinuous Galerkin
discretizations of the compressible Navier—Stokes equations,”" Journal of Computational Physics, Vol. 207, No. 1, pp. 92-113,
2005.

H. Luo, J. D. Baum, and R. Lohner, "' A Discontinuous Galerkin Method Using Taylor Basis for Compressible Flows on
Arbitrary Grids," Journal of Computational Physics, DOI: 210.1016/j.jcp.2008.06.035, Vol. 227, No 20, pp. 8875-8893,
October 2008.

“H. Luo, J.D. Baum, and R. Léhner, “"On the Computation of Steady-State Compressible Flows Using a Discontinuous
Galerkin Method", International Journal for Numerical Methods in Engineering, Vol. 73, No. 5, pp. 597-623, 2008.

H. Luo, J. D. Baum, and R. Lohner, ""A Hermite WENO-based Limiter for Discontinuous Galerkin Method on

Unstructured Grids," Journal of Computational Physics, Vol. 225, No. 1, pp. 686-713, 2007.
4. Luo, J.D. Baum, and R. Lohner, "A p-Multigrid Discontinuous Galerkin Method for the Euler Equations on
Unstructured Grids", Journal of Computational Physics, Vol. 211, No. 2, pp. 767-783, 2006.

11



"H. Luo, J.D. Baum, and R. Lohner, “"A Fast, p-Multigrid Discontinuous Galerkin Method for Compressible Flows at All
Speeds", AIAA Journal , Vol. 46, No. 3, pp.635-652, 2008.

M. Dumbser, D.S. Balsara, E.F. Toro, C.D. Munz. A unified framework for the construction of one-step finite volume and
discontinuous Galerkin schemes on unstructured meshes. Journal of Computational Physics, 227:8209-8253, 2008.

M. Dumbser, O. Zanotti. Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD
equations. Journal of Computational Physics, 228:6991-7006, 2009.

M. Dumbser. Arbitrary High Order PNPM Schemes on Unstructured Meshes for the Compressible Navier-Stokes
Equations. Computers & Fluids, 39: 60-76. 2010.

2IF. Bassi and S. Rebay, "*A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the
Compressible Navier-Stokes Equations,” Journal of Computational Physics, Vol. 131, pp. 267-279, 1997.

2F. Bassi and S. Rebay, “‘Discontinuous Galerkin Solution of the Reynolds-Averaged Navier-Stokes and k-o Turbulence
Model Equations, Journal of Computational Physics, Vol. 34, pp. 507-540, 2005.

BB. Cockburn and C.W. Shu, “‘The Local Discontinuous Galerkin Method for Time-dependent Convection-Diffusion
System, SIAM, Journal of Numerical Analysis, Vo. 16, 2001.

C. E. Baumann and J. T. Oden, **A Discontinuous /p Finite Element Method for the Euler and Navier-Stokes Equations,”
International Journal for Numerical Methods in Fluids, Vol. 31, 1999.

35J. Peraire and P. O. Persson, The Compact Discontinuous Galerkin Method for Elliptic Problems. SIAM Journal on
Scientific Computing, 30: 1806-1824, 2008.

2D, N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, **Unified Analysis of Discontinuous Galerkin Methods for Elliptic
Problems", SIAM Journal on Numerical Analysis. Vol. 39, No. 5., pp. 1749-1779, 2002.

Y7G. Gassner, F. Lorcher, and C. D. Munz, A Contribution to the Construction of Diffusion Fluxes for Finite Volume and
Discontinuous Galerkin Schemes”, Journal of Computational Physics, Vol. 224, No. 2, pp. 1049-1063, 2007.

BH. Liu and K. Xu, A Runge-Kutta Discontinuous Galerkin Method for Viscous Flow Equations", Journal of
Computational Physics, Vol. 224, No. 2, pp. 1223-1242, 2007.

*H. Luo, L. Luo and K. Xu - A Discontinuous Galerkin Method Based on a BGK Scheme for the Navier-Stokes Equations
on Arbitrary Grids, Advances in Applied Mathematics and Mechanics, Vol. 1, No. 3, pp. 301-318, 2009.

30B. van Leer and S. Nomura, ' Discontinuous Galerkin Method for Diffusion," AIAA Paper 2005-5108,2005.

3IB. van Leer and M. Lo, A Discontinuous Galerkin Method for Diffusion Based on Recovery," AIAA Paper 2007-
4083,2007.

32M. Raalte and B. van Leer, “Bilinear Forms for the Recovery-Based Discontinuous Galerkin Method for Diffusion,"
Communication of Computational Physics, Vol. 5, No. 2-4, pp. 683-693, 2009.

3R. Nourgaliev, H. Park, and V. Mousseau, **Recovery Discontinuous Galerkin Jacobian-Free Newton-Krylov Method for
Multiphysics Problems," To be appeared in Computational Fluid Dynamics Review 2009, 2009.

**H.T Huynh, ‘A Reconstruction Approach to High-order Schemes Including Discontinuous Galerkin for Diffusion,” AIAA
Paper 2009-0403, 2009.

H. Luo, L. Luo, R. Nourgaliev, and V. Mousseau, A Reconstructed Discontinuous Galerkin Method for the Compressible
Euler Equations on Arbitrary Grids, AIAA-2009-3788, 2009.

3°H. Luo, L. Luo, R. Nourgaliev, and V. Mousseau, A Reconstructed Discontinuous Galerkin Method for the Compressible
Navier-STokes Equations on Arbitrary Grids, Journal of Computational Physics, Vol. 229, pp. 6961-6978, doi: 10.1016/j.jcp
2010.05.033, 2010.

37S. Taneda, “*Experimental Investigations of the wake behind a sphere at low Reynolds numbers, J. Phys. Soc. Jpn., 11
(1956), pp 1104-1108.

38y Sun, Z.J. Wang, and Y. Liu, “"High-Order Multidomain Spectral Difference Method for the Navier-Stokes Equations on
Unstructured Hexahedral Grids," Communications in Computational Physics, Vol. 2, No., 2, pp. 310,333, 2007.

12



